DISCRETE MATHEMATICS

Time: Three hours Maximum: 100 marks

PART A — $(6 \times 5 = 30 \text{ marks})$

- Explain any two relations with examples. 1.
- Prove that the equality of numbers on a set of real numbers is an equivalence relation.
- Draw the truth table and circuit diagram for the 3. OR and AND gates.
- Define tautology and contradiction. 4.
- Explain the problem of Tower of Hanoi. 5.
- What is a recurrence relation? Explain with example.
- Explain any two types of graphs with suitable example.

- 8. Define isomorphism of two graphs with examples.
- 9. Explain duality in lattices with example.
- 10. Define modular lattice. Write an example.

PART B
$$-$$
 (4 × 10 = 40 marks)

Answer any FOUR questions.

- 11. Let $R = \{(x, 2x)/x \in I\}$ and $S = \{(x, 7x)/x \in I\}$ find $R \circ S$, $S \circ R$, $R \circ R$, $R \circ S \circ R$, $S \circ R \circ S$.
- 12. Construct the truth table for

$$(p \wedge Q) \vee (\bigcap P \wedge R) \vee (Q \wedge R).$$

- 13. Prove that $(\exists x) M(x)$ follows logically from the premises $(x) (H(x) \to M(x))$ and $(\exists x) H(x)$.
- 14. Prove that a tree with n vertices has n-1 edges.
- 15. Prove that the maximum number of edges in a simple graph with n vertices is n(n-1)/2.
- 16. State and prove the modular inequality of a lattice.

2

PART C —
$$(2 \times 15 = 30 \text{ marks})$$

Answer any TWO questions.

17. (a) Let
$$X = \{1, 2, 3, 4, \dots 7\}$$
 and

 $R = \{(x, y)/x - y \text{ is divisible by 3}\}$ show that R is an equivalence relation. Draw the graph of R.

- (b) If $f: A \to B$ and $g: B \to C$ be bijective and prove that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
- 18. (a) Prove

$$P \to (Q \to R) \Leftrightarrow P \to \bigcap Q \lor R \Leftrightarrow (P \land Q) \to R$$
.

- (b) Explain Travelling sales man problem.
- 19. (a) Explain the applications of Boolean algebra to switching theory.
- (b) Prove that every finite Boolean algebra is atomic.

3

PROGRAMMING IN C++.

Describe the different forms of if statement in

Time: Three hours

Maximum: 100 marks

PART A — $(6 \times 5 = 30 \text{ marks})$

- 1. Describe about Data abstraction and encapsulation.
- 2. Describe about input Streams in C++.
- 3. How dynamic initialization of objects be handled in C++? Explain.
- 4. What is a constructor? How it is declared and defined? Explain.
- 5. Outline the advantages of functions.
- 6. Classify the different types of storage classes.
- 7. Describe about hierarchical inheritance.
- 8. Describe the operators that cannot be overloaded.
- 9. How the polymorphism be achieved? Explain.
- 10. What is virtual function? How can we define it? Explain.

PART B $-(4 \times 10 = 40 \text{ marks})$

Answer any FOUR questions.

- 11. Describe the different forms of 'if statement in detail.
- 12. Discuss the importance of Destructor.
- 13. Describe the different types of parameter passing schemes.
- 14. Describe the various C++ operators with examples.
- 15. Write a C++ program which overloading Binary Operators using Friends.
- 16. Discuss the benefits of object oriented programming.

PART C — $(2 \times 15 = 30 \text{ marks})$

Answer any TWO questions.

17. Describe the uses of 'Do-while' and 'while' statements in C++. Outline the rules to be followed. Compare them with 'for' statement. (15)

- 18. (a) With suitable example C++ program, explain the concept of multilevel inheritance. (10)
- (b) Discuss the needs and uses of recursive function. (5)
- 19. (a) Describe the uses of 'this' pointer in detail.
- (b) Outline rules to be followed while using virtual functions. (8)

3

COMPUTER GRAPHICS

Time: Three hours

Maximum: 100 marks

PART A — $(6 \times 5 = 30 \text{ marks})$

- 1. What are parallel and perpendicular lines? Explain.
- 2. How to generate characters?
- 3. What are device coordinates? Explain.
- 4. Explain How to thicken the line segments?
- 5. What are convex and concave polygon's? Explain.
- 6. Explain polygon. Flood fill algorithm.
- 7. Write HMR for translation and scaling.
- 8. Explain display procedures in detail.
- 9. Explain window and viewport.
- 10. Explain Midpt subdivision algorithm.

PART B — $(4 \times 10 = 40 \text{ marks})$

Answer any FOUR questions.

- 11. What are Random scan and Rastu scan systems?
- 12. Explain beam penetration and shadow mask CRT's.
- 13. What are line attributes? Explain.
- 14. How to translate a real world scene to device coordinates?
- 15. Draw and explain the function of LCD's.
- 16. Explain the various 3D transformations.

PART C — $(2 \times 15 = 30 \text{ marks})$

Answer any TWO questions.

- 17. Write the circle generation algorithm in detail.
- 18. Explain the various flatpanel devices available on computer graphics.

19. Write short notes on:

- (a) Aspect ratio
- (b) Positioning devices.
- (c) Calligraphic displays.

OPERATING SYSTEMS

Time: Three hours

Maximum: 100 marks

PART A — $(6 \times 5 = 30 \text{ marks})$

- What do you mean by Buffering and Spooling? 12. Describe the FCFS scheduling with an examinary
- 2. Compare Non-Preemptive scheduling with preemptive scheduling.
- 3. Discuss the contents of Process Control Block.
- Describe the memory management technique 4. which support Non-multiprogramming environment.
- 5. Discuss the advantages of Demand Paging Memory Management.
- Discuss about 'Early operating systems'. 6.
- Describe the physical characteristics of Disk. 7.
- 8. Describe the various file operations.

- 9. What is meant by synchronous message exchange? Explain.
- 10. Compare Distributed Operating System with Network Operating System.

PART B — $(4 \times 10 = 40 \text{ marks})$

Answer any FOUR questions.

- 11. Describe the hierarchical view of an operating system structure.
- 12. Describe the FCFS scheduling with an example.
- 13. Describe the seek optimization strategies SCAN, E-SCAN.
- 14. Describe the various commands handled while working with DOS Directories.
- 15. With an example, explain the page replacement algorithm. Least Recently used.
- 16. How can we present dead locks? Explain in detail.

PART C - (2 × 15 = 30 marks)

Answer any TWO questions.

- 17. (a) Describe the Banker's Algorithm in detail.
- (b) Describe the Paging memory Allocation in detail.

- 18. Describe the major functions of each categories of an operating system.
- 19. (a) Describe the various ways to access the information stores in the file.
- (b) Describe the various system calls handled for basic file manipulation in Unix.

Answer any FOUR questions.

COMPUTER ORGANISATION

Time: Three hours

Maximum: 100 marks

PART A $-(6 \times 5 = 30 \text{ marks})$

Answer any SIX questions.

- 1. What are interrupts? Explain.
- 2. Explain subroutines?
- 3. What is an instruction format?
- 4. What are data manipulation instructions?
- 5. Explain overlapped register window.
- 6. Explain synchronous data transfer.
- 7. What is a control memory? Explain.
- 8. Explain microprogram sequencer.
- 9. What is a hit ratio? Explain.
- 10. What do you mean by page replacement algorithm?

- 11. Explain the design of control unit.
- 12. Write an ALP for sorting n numbers.
- 13. Draw and explain general register CPU organization.
- 14. Explain instruction cycle using an example.
- 15. Explain the purpose of an interface with peripherals?
- 16. Explain the design of RAM and ROM chips.

PART C - $(2 \times 15 = 30 \text{ marks})$

Answer any TWO questions.

- 17. Discuss in detail the various addressing modes?
- 18. Draw and explain DMA.
- 19. What is a virtual memory? Discuss in detail the mapping procedure involved?

liked representation.

COMPUTER ALGORITHMS AND DATA STRUCTURES

Time: Three hours Maximum: 100 marks

PART A — $(6 \times 5 = 30 \text{ marks})$

- 1. Write the general algorithm for divide and conquer.
- 2. What do you understand by time and space complexities?
- 3. Discuss briefly job sequencing with deadlines.
- 4. Apply the Greedy method to solve the Knapsack problem.
- 5. Explain the multistage graph problem.
- 6. What is 0/1 Knapsack problem? Explain.
- 7. What are queues? Write algorithm to insert and delete elements in a queue.

- 8. Write an algorithm to add two polynomials using liked representation.
- 9. Explain the binary tree travels with examples.
- 10. Differentiate between trees and binary trees.

PART B $-(4 \times 10 = 40 \text{ marks})$

Answer any FOUR questions.

- 11. Write the algorithm to find minimum and maximum elements of the given set of numbers. Discuss its performance.
- 12. Explain the algorithm of selection sort with examples and analysis its time complexity.
- 13. Write an algorithm for single source shortest path problem using Greedy technique.
- 14. What is the travelling sales person problem? Explain.
- 15. Discuss the mazing problem with the algorithm to find a path in the maze.
- 16. Discuss the hashing functions.

PART C — $(2 \times 15 = 30 \text{ marks})$

Answer any TWO questions.

- 17. Discuss the use of Greedy method in optimal storage on Tapes. Compute its efficiency in comparison with sequential storage.
- 18. What is divide and conquer method? Explain binary search algorithm using above method and find its complexities.
- 19. Discuss the evaluation of expression along with the algorithm for infix to postfix conversion.

3