Objective type questions (with answers) for Madurai Kamaraj University (2019)

- 1. Let $d: X \times X \to \mathbb{R}$, where X be a non-empty set. d is a metric if
 - (a) $d(x,y) \ge 0$ for all $x, y \in X$ and $d(x,y) \le d(x,z) + d(y,z), \forall x, y, z \in X$.
 - (b) d(x,y) = 0 iff x = y and $d(x,y) \le d(x,z) + d(y,z), \forall x, y, z \in X$.
 - (c) $d(x,y) = d(y,x), \forall x, y \in X \text{ and } d(x,y) \le d(x,z) + d(y,z), \forall x, y, z \in X.$

(d) none of these.

Answer (b)

- 2. Let \mathbb{R} be equipped with usual metric. Then the set \mathbb{I} of all irrational numbers are dense in \mathbb{R} since
 - (a) \mathbb{I} is uncountable
 - (c) \mathbb{I} is the complement of a dense set
- (b) \mathbb{I} is the complement of a countable set
- (d) \mathbb{I} is an infinite set

Answer (b)

- 3. Let (X, d) be a metric space and $A \subseteq X$. Then
 - (a) A is connected \Rightarrow Int A is connected
 - (c) A is connected $\Rightarrow \overline{A}$ is connected

(b) Int A is connected $\Rightarrow A$ is connected

(d) \overline{A} is connected $\Rightarrow A$ is connected

Answer (c)

4. Let f be a twice differentiable function on \mathbb{R} such that $f''(x) > 0, \forall x \in \mathbb{R}$. Then f(x) = 0 has

(a) exactly two solution (b) a positive solution if f(0) = 0 and f'(0) = 0(c) no positive solution if f(0) = 0 and f'(0) > 0(d) no positive solution if f(0) = 0 and f'(0) < 0

Answer (c)

- 5. Let f be a continuously differentiable function on [a, b] such that $|f''(x)| \leq K$, $\forall x \in [a, b]$. For a partition $P = \{a = a_0 < a_1 < \cdots < a_n = b\}$, if U(P, f) and L(P, f) denotes the upper and lower Riemann sums of f over P, then
 - (a) $|L(P,f)| \le K(b-a) \le |U(P,f)|$ (b) $U(P,f) - L(P,f) \le K(b-a)$ (c) $U(P,f) - L(P,f) \le K ||P||$, where $||P|| = \max(a_i - a_{i-1})$ (d) $U(P,f) - L(P,f) \le K ||P||(b-a)$

Answer (c)

- 6. If f is a monotonically increasing function on \mathbb{R} , then
 - (a) $\lim_{x \to a} f(x)$ exists $\forall a$ (b) $\lim_{x \to a^+} f(x) \ge \lim_{x \to b^-} f(x)$, for a < b(c) f can have discontinuity of first kind (d) f can have discontinuity of second kind

Answer (d)

7. Let X be a connected subset of ℝ such that every element of X is an irrational number, then the cardinality of X is
(a) infinite
(b) countably infinite
(c) 2
(d) 1

Answer (d)

8. If (a_n) and (b_n) sequences of positive real numbers such that arithmetic average and geometric average of a_n and b_n converge to a same limit, then both (a_n) , (b_n)

(a) are convergent but the limits may not be equal

(c) need not be convergent

(b) converge to a same limit

(d) are not convergent

Answer (b)

9. The value of $\sum_{1}^{\infty} \frac{1}{n^2}$ is (a) $\frac{\pi}{3}$ (b) $\frac{\pi}{6}$ (c) $\frac{\pi^2}{3}$ (d) $\frac{\pi^2}{6}$ Answer (d)

10. Let X = {1,2,3,4,5} and τ = {Ø, X, {2}, {1,2}, {2,3}, {1,2,3}} Then which of the following is the limit point of {3,4,5}
(a) 1
(b) 2
(c) 3
(d) 4 Answer (d)

11. If (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) are topological spaces, then $\{U \times V : U \in \mathcal{T}_X, \mathcal{T}_X \in \mathcal{T}_Y\}$ is a (a) a topology (b) basis (c) subbasis but not a basis (d) not a subbasis Answer (b)

- 12. If $f: (\mathbb{R}, \tau_1) \to (\mathbb{R}, \tau_2)$ is defined by $f(x) = x, \forall x \in \mathbb{R}$ (the set of all real numbers), where τ_1 is the usual topology and τ_2 is the discrete topology then
 - (a) f is both continuous and open (b) f is open but not continuous
 - (c) f is continuous but not open (d) f is neither open not continuous

Answer (b)

- 13. Let (X, τ) be a topological space where, X is a finite set. Then which of the following statements is not true? τ is discrete if and only if X is a
 (a) T₀ space
 (b) T₁ space
 (c) T₂ space
 (d) T₃ space
 Answer (a)
- 14. Let $(X_{\alpha}, \tau_{\alpha})_{\alpha \in I}$ be an arbitrary collection of topological spaces. Then which of the following statements is not true?
 - (a) $\prod_{\alpha \in I} X_{\alpha}$ is connected if each X_{α} is connected (b) $\prod_{\alpha \in I} X_{\alpha}$ is compact if each X_{α} is compact (c) each X_{α} is compact if $\prod_{\alpha \in I} X_{\alpha}$ is compact (d) $\prod_{\alpha \in I} X_{\alpha}$ is normal if each of X_{α} is normal.

Answer (d)

15. Consider \mathbb{R}^k with the topology induced by the Euclidean norm. Which of the following statements is not true?

(a) \mathbb{R}^k is second countable	(b) \mathbb{R}^k is first countable
() The constant of the cons	(1) \mathbb{T}^{k}

(c) \mathbb{R}^k is of first category (d) \mathbb{R}^k is of second category

Answer (c)

16. Let $f: (X_1, \tau_1) \to (X_2, \tau_2)$ be a continuous, one-to-one and onto map. f is a homeomorphism if

(a) X_1 is Hausdorff and X_2 is compact (b) X_1 is Hausdorff or X_2 is compact (c) X_1 is compact and X_2 is Hausdorff (d) X_1 is compact or X_2 is Hausdorff

(d) J is neither open not continuo

Answer (c)

Answer (a)

17.	17. If (\mathbb{R}^*, \star) is a group with respect to $a \star b = \frac{ab}{2}$ then the inverse of a is					
	(a) $\frac{1}{a}$ Answer (b)	(b) $\frac{2}{a}$	(c) $\frac{3}{a}$	(d) $\frac{4}{a}$		
18.	The number of elements in the (a) 3 Answer (d)	e cyclic subgroup (b) 6	$\begin{array}{l} \langle 2 angle \mbox{ in } (\mathbb{Z}_{18}, \oplus) \mbox{ is } \ (c) \ 9 \end{array}$	(d) 18		
19.	The group of order 25 is (a) cyclic (b) abelian Answer (c)	(c) abelian	u but not cyclic	(d) neither abelian nor cyclic		
20.	If R is a ring such that $a^2 = a$ (a) $a + b = 0 \Rightarrow a = -b$ (b) a Answer (a)	for all $a \in R$ the $+b = 0 \Rightarrow a = b$	en which of the followi (c) $a + b = 0 \Rightarrow ab =$	ng is not true? = ba (d) $a + b = 0 \Rightarrow a = b = 0$		
21.	The characteristic of the ring (a) 0 Answer (b)	$(\mathscr{P}(S), \Delta, \cup)$ is (b) 2	(c) 3	(d) 5		
22.	The prime ideal of \mathbb{Z} is (a) $\langle 1 \rangle$ Answer (b)	(b) $\langle 2 \rangle$	(c) $\langle 4 \rangle$	(d) $\langle 6 \rangle$		
23.	Let K be the field of complex (a) infinite Answer (d)	numbers and F (b) 1	the field of real number (c) 2	ers. Then $O[G(K, F)]$ is (d) none of these		
24.	Which of the following rings is (a) $\mathbb{Q}[X,Y]/(X)$ Answer (a)	b a PID? (b) $\mathbb{Z} + \mathbb{Z}$	(c) Z[-	$X] (d) M_2(\mathbb{Z})$		
25.	The polynomial $x^3 - 312312x$ (a) \mathbb{F}_3 Answer (d)	+ 123123 is irred (b) \mathbb{F}_{13}	ucible in $F[X]$ if F is (c) \mathbb{F}_1	7 (d) Q		
26.	The normed space $(C_{00}, \ \cdot\ _{\infty})$) is				
	(a) a Banach space(c) a Hilbert space		(b) not a Banach spa(d) Banach space not	ace t a Hilbert space		
	Answer (b)					
27.	If V is the inner product space $a, b \in \mathbb{R}$, with the inner product (a) $\{1, x\}$ (b) $\{1, x\}$ Answer (c)	e of all polynomia ct $\langle p, q \rangle = \int_0^1 p(x)$ $, x\sqrt{3}$	als of the form $p:[0,1]$ (q(x) dx, then an orth (c) $\{1, (2x-1)\sqrt{3}\}$] $\rightarrow \mathbb{R}$ such that $p(x) = ax + b$, onormal basis of V is $\overline{3}$ } (d) $\{1, x - \frac{1}{2}\}$.		
28.	If $f : \mathbb{R}^n \to \mathbb{R}$ is a linear map (a) $[-a, a]$ for some $a \ge 0$	the set $\{f(x_1, x_2, (b) [0, 1] \}$	$(\dots, x_n): x^2 + x^2 + \cdots$ (c) $[0, a]$ for some $a \ge 1$	$(+x_n^2 \le 1)$ equals 0 (d) $[a, b]$ for some $a < b$		

29. Let $T: X \to Y$ be a continuous linear transformation between normed spaces. Then T is continuous if

(a) X is of finite dimension(b) Y is of finite dimension(c) X is of infinite dimension(d) Y is of infinite dimension

Answer (a)

30. Let C_{00} be the space of all real sequences which are eventually zero. If $||(x_n)||_p = \left\{\sum_{n=1}^{\infty} |x_n|^p\right\}^{1/p}$ for $1 \le p < \infty$ and $||(x_n)||_{\infty} = \sup\{|x_n| : n \in \mathbb{N}\}$. Then the identity transformation $I: (C_{00}, || \cdot ||_a) \to (X, || \cdot ||_b)$ is

- (a) continuous when $a = \infty$ and b = 1
- (c) I is continuous when a = 2 and b = 1
- (b) *I* is not continuous when $a = \infty$ and b = 1(d) *I* is not continuous when a = 3 and b = 4

Answer (b)

 31. The dimension of the subspace spanned by (1, 0, 2, 0), (2, 0, 1, 0), (1, 0, 1, 0) in \mathbb{R}^4 is

 (a) 1
 (b) 2
 (c) 3
 (d) 4

Answer (c)

- 32. The matrix of the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ given by T(a, b, c) = (3a + b + 2c, a + 5b, 2a + 2c) with respect to the standard basis is
 - (a) $\begin{pmatrix} 3 & 1 & 2 \\ 1 & 5 & 0 \\ 2 & 0 & 2 \end{pmatrix}$ (b) $\begin{pmatrix} 3 & 1 & 2 \\ 1 & 0 & 5 \\ 2 & 5 & 2 \end{pmatrix}$ (c) $\begin{pmatrix} 3 & 1 & 2 \\ 1 & 5 & 0 \\ 2 & 0 & 5 \end{pmatrix}$ (d) $\begin{pmatrix} 0 & 1 & 2 \\ 1 & 5 & 0 \\ 2 & 0 & 2 \end{pmatrix}$

Answer (c)

33. The dimension of the subspace spanned by (1,0,2,0), (2,0,1,0), (1,0,1,0) in ℝ⁴ is
(a) 1
(b) 2
(c) 3
(d) 4
Answer (c)

34. If $M_n(\mathbb{R})$ is the space of all $n \times n$ real matrices, and $T: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ is a liner transformation such that T(A) = 0, for all symmetric or skew symmetric matrices A, then the rank of A is (a) 0 (b) n (c) $\frac{n(n+1)}{2}$ (d) $\frac{n(n-1)}{2}$ Answer (a)

35. If H_n is the real vector space of all matrices of order $n \times n$ satisfying $a_{i,j} = a_{r,s}$ if i + j = r + s, then dimension of H_n is (a) n^2 (b) $n^2 - n + 1$ (c) 2n + 1 (d) 2n - 1

Answer (d)

36. The radius of convergence of the power series $\sum_{n=1}^{\infty} z^{n!}$ is (a) 0 (b) ∞ (c) 1 (d) a real number greater than 1 Answer (c)

- 37. If x and y are complex numbers such that |x + y| = |x| + |y|. Then
 - (a) x and y are positive real numbers
 - (b) x and y have same imaginary parts
 - (c) either $x = \alpha y$ or $y = \alpha x$ for some real $\alpha \ge 0$
 - (d) either $x = \alpha y$ or $y = \alpha x$ for some real number α

Answer (c)

38. The radius of convergence of $\sum_{n=0}^{\infty} a_n z^n$, where $a_n = m$, $0 \le m \le 4$ and $n \equiv m \pmod{5}$, is

(a) 0 (b) ∞ (c) 4 (d) $\frac{1}{4}$

Answer (d)

39. If
$$f(z) = \frac{z^4}{(z-1)(z-2)(z-3)}$$
, the residue of f at $z = 1$ is
(a) $\frac{1}{2}$ (b) $\frac{1}{6}$ (c) 0 (d) 2
Answer (a)

40. The value of $\int_{|z|=4} \frac{z^2}{z-2} dz$ (a) $\frac{2}{\pi i}$ (b) $\frac{2}{\pi}$ (c) 8π (d) $8\pi i$ (d) $8\pi i$ (e) $8\pi i$

41. For a binomial distribution with parameters (n, p) has mean = 27 and variance = 18. Find n. (a) 18 (b) 27 (c) 81 (d) 162 Answer(d)

- 42. The probability that at least one of A and B occurs is 0.6. If A and B occur simultaneously with probability 0.3 then p(A') + p(B') (where B' means complement of B) is (a) 0.9 (b) 1.15 (c) 1.1 (d) 1.2 Answer (c)
- 43. If the mean and variance of a binomial variate X are 2 and 1 respectively then the probability that X takes a value at least one is (a) 2/3 (b) 4/5 (c) 7/8 (d) 15/16Answer(d)

44. Let X_1, X_2, \ldots be i.i.d standard normal random variables and let $T_n = \frac{X_1^2 + X_2^2 + \cdots + X_n^2}{n}$. Then the limiting distribution of

(a) $T_n - 1$ is χ^2 with 1 degree of freedom (b) $\frac{T_n - 1}{\sqrt{n}}$ is normal with mean 0 variance 2 (c) $\sqrt{n}(T_n - 1)$ is χ^2 with 1 degree of freedom (d) $\sqrt{n}(T_n - 1)$ is normal with mean 0 variance 2

Answer (d)

45. Men and a women independently arrive in a queue according to Poisson process with rate λ_1 and λ_2 , respectively. The probability that the first arrival in the queue is a man is (a) $\frac{\lambda_1}{\lambda_1 + \lambda_2}$ (b) $\frac{\lambda_2}{\lambda_1 + \lambda_2}$ (c) $\frac{\lambda_1}{\lambda_2}$ (d) $\frac{\lambda_2}{\lambda_1}$

46. If $y_1(x)$ and $y_2(x)$ be two solutions of $\frac{dy}{dx} = y + 17$ with initial conditions $y_1(0) = 0$, $y_2(0) = 1$. Then

- (a) y_1 and y_2 will never intersect (b) y_1 and y_2 will intersect at 17
- (c) y_1 and y_2 will intersect at e (d) y_1 and y_2 will intersect at 1

Answer (a)

47. The partial differential equation $y \frac{\partial^2 u}{\partial x^2} + x \frac{\partial^2 u}{\partial y^2} = 0$ is hyperbolic in

- (a) the second and fourth quadrants
- (c) the second and third quadrants
- (b) the first and fourth quadrants

(d) the first and fourth quadrants

Answer (a)

- 48. The particular solution of $\log(dy/dx) = 3x + 4y, y(0) = 0$ is (a) $e^{3x} + 3e^{-4y} = 4$ (b) $4e^{3x} 3e^{-4y} = 3$ (c) $3e^{3x} + 4e^{4y} = 7$ (d) $4e^{3x} + 3e^{-4y} = 7$ Answer (d)
- 49. The complete solution of $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = e^{2x}$ is (a) $Ae^x + Be^{2x} + xe^{2x}$ (b) $Ae^{-x} + Be^{-2x} + xe^{2x}$ (c) $Ae^x + Be^{2x} + xe^x$ (d) $Ae^{-x} + Be^{-2x} + e^{2x}$ Answer (a)
- 50. The PDE $\frac{\partial^2 u}{\partial y^2} y \frac{\partial^2 u}{\partial x^2} = 0$ has (a) two families of real characteristic curves for y < 0

 - (b) no real characteristic for y < 0
 - (c) vertical lines as a family of real characteristic curves for y = 0
 - (d) branches of quadratic curves as characteristics for $y \neq 0$

Answer (c)